Time: 20 Minutes

SECTION "A" (MULTIPLE CHOICE QUESTION)

- 1. Choose the correct answer for each from the given option:
- (i) The slope of the bisector of the 1st & the 3rd qiatramt os"
 - a) 0
 - b) -1
 - c) 1
 - ∞ (b

(ii) The distance of point (2,3) from x – axis is:

- a) 5
- b) 3
- c) 2
- d) 1

(iii) The length of the tangent from the point (1,2) to the circle $x^2 + y^2 - 2 = 0$ is:

- a) $\sqrt{2}$
- b) 1
- c) $\sqrt{6}$
- d) $\sqrt{3}$

(iv) Two lines, represented by $az^2 + 2hxy + by^2 = 0$, where a, h, b are not all zero, will be orthogonal, if:

- a) a-b=0
- b) a+b=0
- c) h = 0
- d) a = 0

(v)The radius of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is:

a) $\sqrt{g^2 + f^2 - c}$ b) $\sqrt{g^2 + f^2 + c}$ c) $\sqrt{g^2 - f^2 - c}$ d) $\sqrt{g^2 + f^2 - c^2}$

(vi) $\frac{d}{dx} \ln x^2 =:$ a) ax^{0-1}

- b) a/x
- c) x²lnx
- d) $a^2 \ln a$

(vii) The necessary condition for f(x) to have entreme value is:

a)
$$f''(x) = 0$$

b) f'(x) = 0

Max. Marks: 20

c)
$$f(x) = 0$$

d) $f'(x) = 1$
(viii) $\int x^{-1} dx =:$
a) $Xo + c$
b) $1/x + c$
c) $1/x^{1} + c$
d) $In x + c$
(ix) $\int cosec^{2} x dx =:$
a) $-cosecx + c$
b) $-cot x + c$
c) $Cos ecx cot x + c$

d) In $\cot x + c$

(x) The distance between foci of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is:

- a) $\frac{2a}{e}$
- b) 2a
- c) 2ae
- $2b^2$

d)
$$\frac{1}{a}$$

- (xi) If e = 3/2, then the conic is a / an :
 - a) Circle
 - b) Ellipse
 - c) Parabola
 - d) hyperbola

MATHEMATICS

Time: 2 Hours 40 Minutes

SECTION 'B' (SHORT - ANSWER QUESTIONS)

NOTE: Answer any 10 questions from this section. At least three question from each section.

SECTION B (Analytic Geometry) (Straight Line & Vector Algebra)

2.

- (i) The centroid of triangle, whose two vertices are (2, 4) and (3, -4), is found to be (3, 1). Find its third vertex.
- OR In what ratio is the line segment joining (1, 3) and (2, 7) divided by 3x + y = 9?
- (ii) Find the equation of. the line which is perpendicular to 2x + 3y + 4 = 0 and passes through (2, -1).
- (iii) A line, whose y Intercept is 1 less than its x intercept form with the coordinate axis a triangle of area 6 square units. What is its equation?
- (iv) A particle acted upon by the forces 4i + j 3k and 3i + j k, is displaced from the point (1, 2, 3) to point (5, 4, 1). Find the work done.

2019

Marks: 80

- OR Calculate (a, b) for vectors a = 2i + 3j + 4k and b = i j + k
- (v) Prove that: $[\overline{a} + \overline{b} \ \overline{b} + \overline{c} \ \overline{c} + \overline{a}] = 2[\overline{a} \ \overline{b} \ \overline{c}]$

ANALYTIC GEOMETRY (CONIC SECTIONS)

3.

- (i) Find the equation of the circle of radius α which passes through the two points on the x axis which are at a distance b from the origin.
- (ii) Find the equation of the parabola with focus (3, 4) and directrix x + y 1 = 0.
- (iii) Find the equation of the ellipse whose center is at (0, 0); e = 2/3 latus return of length 20/3 and major axis ls along y axis.
- (iv) Find the eccentricity, foci and directories of hyperbola $9x^3 y^2 + 1 = 0$.
- (v) The length of the kajor axis of an ellipse is 25 units and its foci are the points $(\pm 5, 0)$. Find its equation.
- OR Show that the eccentricities e_1 and e_2 of two conjugate hyperbolae satisfy the relation: $e_1^2 + e_2^2 = e_1^2 e_2^2$

CALCULUS

4.

- (i) Find the derivative, by the first principle at any point $x = \alpha$ in the domain D(f) of the function $f(x) = \cos^2 x$ OR $f(x) = x^{2/3}$
- (ii) Evaluate any two of the following:

- (iii) Find the approximate value of $\sin 46^{\circ}$ using differentials.
- (iv) To polynomial functions f and g are; defined by $f(x) = x^2 3x + 4$ and g(x) = x + 1, $\forall x \in \Re$. Find fog. gof an show that fog \neq gof.
- OR Find the limit of the sequence $\frac{3}{2}, \frac{2}{3}, \frac{5}{4}, \frac{4}{5}, \dots$
- (v) · solve the differential equation: $2 + 2y \frac{dy}{dx} = 1 + 3x^2$, y (2) = 1

SECTION 'C' (DETAILED - ANSWER QUESTIONS)

Note: answer any two questions from this section:

5. Evaluate any four of the following:

(i)
$$\int (x^3 + 1)^{7/5} x^5 dx$$

(ii) $\int e^x \frac{1+\sin x}{1+\cos x} dx$
(iii) $\int e^{-3} \frac{\sqrt{x^2-9}}{\sqrt{x^2-9}} dx$

(iii)
$$\int_{-6}^{-6} \frac{dx}{2}$$

(v)
$$\int \frac{x^2 - x + 1}{7x - 25}$$

(v)
$$\int \frac{7x^2 23}{(x-3)(x-4)} dx$$

(vi) $\int \frac{\sec x \tan x}{a+b \sec x} dx$

6. (a) Find the centroid of the triangle the equation of whose sides are $12x^2 - 20xy + 7y^2 = 0$ and 2x - 3y + 4 = 0.

(b) The Coordinates of two points A and B are (3, 4) and (5, 2) respectively. Find the coordinates of any point P if PA = PB and the area of triangle PAB is 10 square units.

7. (a) Three vertices A, B and C of a triangle are (2, 1), (5, 2) and (3, 4) respectively. Find the coordinates of the circumcenter and the radius of the circumcircle of triangle ABC.

(b) Evaluate
$$\frac{dy}{dx}$$
 of any two of the following:

(i)
$$\sqrt{x^2 + y^2} = in (x^2 - y^2)$$

(ii)
$$y = in \left| \frac{1-x^2}{1+x^2} \right|$$

(iii) $X = a \cos^2 3\theta$, $y = b \sin^2 3\theta$

OR find the relative maximum and minimum values of the function $f(x) = e^x \sin x$

MATHEMATICS

Time: 20 Minutes

SECTION "A" (MULTIPLE CHOICE QUESTION)

1. Choose the correct answer for each from the given option:

 $\lim_{x\to 0}\frac{e^{x}-1}{x}=:$ (i) a) e^x b) e c) 1 d) 0 $\lim_{x \to 0} \frac{sincx}{x}$: (ii) a) 1 b) 1/c c) 0 d) c The least upper bond (l.u.b) of $\{-10, -5, 8, -\frac{1}{3}, 15, 21\}$ is: (iii) a) -10 b) 8 c) 15 d) 21 (iv) The coordinate of centroid of the triangle whose vertices are (2, 8) (8, 2) and (9, 2) are: a) (3, 4) b) (19, 19) $\begin{bmatrix} \frac{19}{3} & \frac{19}{3} \\ 3 & 3 \end{bmatrix}$ c) $\frac{1}{3}$ $\frac{1}{3}$ d)

(v) The inclination of x- axis is:

2018

Max. Marks: 20

- a) 90°
- b) 45°
- c) 0°
- d) 270°
- The distance of point (3, 2) from x-axis is: (vi)
 - a) $\sqrt{3}$ units
 - b) 5 units
 - c) 3 units
 - d) 2 units

(vii) If two or more straight line meet at one point, then the lines are said to be:

- a) Concurrent
- b) Parallel
- c) Perpendicular
- d) Coincident

(viii) Some of the slopes of the pair of line $ax^2 + 2hxy + by^2 = 0$ is:

- $\frac{a}{b}$ a)
- b) $\frac{b}{b}$
- c) $\frac{-h}{-h}$

d)
$$\frac{-2}{-2}$$

d) $\frac{\frac{2a}{b}}{\frac{d}{dx}}$ (ix) $\frac{d}{dx}$ (cosec⁻¹ y):

a)
$$\frac{\frac{-1}{y\sqrt{y^2-1}}}{\frac{1}{y\sqrt{y^2-1}}}$$

b)
$$\frac{1}{y\sqrt{1-y^2}}$$

c)
$$\frac{1}{y\sqrt{1-y^2}}$$

d)
$$\frac{1}{y\sqrt{y^2-1}}$$

- An antiderivative of a function is also called: (x)
 - a) Definite integral
 - b) Indefinite integral
 - c) Summation
 - d) Differential

MATHEMATICS

Time: 2 Hours 40 Minutes

SECTION 'B' (SHORT - ANSWER QUESTIONS)

NOTE: Answer any 10 questions from this section. At least three question from each section.

SECTION B (Analytic Geometry) (Straight Line & Vector Algebra)

- 2.
- Find the ratio in which y-axis divides the join of (-5, 3) and (8, 6). Also find the coordination of the (i) point of Division.

2018

Marks: 80

- (ii) Reduce the equation 2x 3y + 4 = 0 into:
 - (a) Perpendicular form
 - (b) Slope-intercept form
- (iii) Find the coordinates of the foot of the perpendicular from (-2, 5) to 3x + y + 11 = 0.
- (iv) Calculate sin (\bar{a}, \bar{b}) for vector $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \hat{k}$.
- OR Find $\cos\theta$, when θ is the single between the vectors $2\hat{i} + \hat{j} + 3\hat{k}$ and $-\hat{i} + 4\hat{j} 2\hat{k}$.
- (v) Simplify: $\left[\vec{a}, \overrightarrow{2b}, -\overrightarrow{3c}, -\overrightarrow{2a} + \vec{b} + \vec{c}\right]$

(Analytic Geometry)(Conic Sections)

3.

- (i) Find the equation of the circle concentric with the circle $x^2 + y^2 + 6x 10y + 33 = 0$ and touching the line y = 0
- (ii) Prove that the product of abscissas, of the point where the straight line y = mx meets the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ Is equal to $\frac{c}{1+m^2}$.
- (iii) Prove that the focal radius of the point (a, b) on the parabola $x^2 = 4ay$ equals |a + b|. OR Find the equation of the parabola whose vertex is (3, 2) and the ends of focal chord are (5, 6) and (5, -2).
- (iv) Find the eccentricity of the ellipse whose axes are 32 and 24.
- (v) Find the equation of the rectangular hyperbola with center at (0, 0) and vertices (0 ± 3) . OR Show that the eccentricities. e_1 the e_2 conjugate hyperbolas satisfy the relation $e_1^2 + e_2^2 = e_1^2 e_2^2$

CALCULUS

4.

- (i) Find the derivative, by the first principle, at x = a, in the domain D(f), of the function $f(x) = \sec x$ OR $f(x) = 3x^2 + x$.
- (ii) Evaluate any two of the following:

a)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

b)
$$\lim_{x \to 0} \frac{e^{mx} - e^{nx}}{x^2}$$

$$x \to 0 \qquad x^2$$

- c) $\lim_{x \to 0} \frac{1}{x}$
- (iii) Calculate $\log_{10}(10.1)$ using differentials, given that $\log_{10} e = 0.4343$.
- (iv) Find the area above the x-axis under the curve $y = 2e^{3x}$, between ordinates a = 2 And b = 5.
- OR Solve the differential equation: $\frac{dy}{dx} = \sqrt{x, y, x} = 100, y = 9$
- (v) Let $f : \Re_{\mathcal{R}}$ \Re be defined by $f(x) = \begin{cases} 0, when \ x \in Q \\ 1, when \ x \in \Re Q \end{cases}$, *Q* being the set of rationals Find $f(\sqrt{3}), f(\pi), f(\frac{1}{5}), f(2)$ and the value of f at 1.5.

SECTION 'C' (DETAILED - ANSWER QUESTIONS)

Note: answer any two questions from this section:

- 5. Evaluate any four of the following:
 - i. $\int_0^2 (x^2 + bx + c) 2/3\left(x + \frac{b}{2}\right) dx$

ii.
$$\int \tan^{-1} x \, dx$$

iii.
$$\int \frac{dx}{\sqrt{5+4x-x^2}}$$
iv.
$$\int \frac{7x-25}{(x-3)(x-4)} dx$$
v.
$$\int \frac{2}{\sqrt{3}} \frac{y^3 dy}{y^3 dy}$$

vi.
$$\int \frac{\sec x \tan x}{a + b \sec x} dx$$

- 6. (a) The coordinates of two points A and B are (3, 4) and (5, -2) respectively. Find the coordinates of any point P if PA = PB and the area of triangle PAB is 10 square units-OR Find the combined equation of the pair of lines through the origin which are perpendicular to the line represented by 3x² + 7xy + 2y² = 0.
 (b) Find the equation of the tangents at the end of the latus rectum of the parabola y² = 4ax
- 7. (a) Find the equation of the straight line which passes through the point (-3, 2) and is such that the portion
 - of it between axes is divided by the point in the ration 1: 2. dy
 - (c) Evaluate $\frac{dy}{dx}$ of any two of the following:

(i)
$$y = \sqrt{a^2 - x^2} + in \sqrt{1 + x^2}$$

(ii)
$$x^{y} \cdot y^{x} = 10$$

(iii) $x = int + sin^{-1} t, y = e + cos t$

OR Find a right angled triangle of maximum area with a hypotenuse of length h.

MATHEMATICS

Time: 20 Minutes

SECTION "A" (MULTIPLE CHOICE QUESTION)

- 1. Choose the correct answer for each from the given option:
- (i) The radius of the circle $x^2 y^2 + 2gx + 2fy + c = 0$ is:
 - a) $\sqrt{g^2 + f^2 + c}$
 - b) $\sqrt{c g^2 f^2}$

c)
$$\sqrt{g^2 - f^2 - c}$$

d)
$$\sqrt{g+f-c}$$

- (ii) The length of latus rectum of the parabola $x^2 = -28y$ is:
 - (a) 7
 - (b) 28
 - (c) 192
 - (d) -7

(iii) The equations of the directories of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are:

- a) $x = \pm a$
- b) $y = \pm a$
- c) $x = \pm a/e$

2017

Max. Marks: 20

d) $y = \pm 1/a$

```
(iv) The vertex .of the parabola (x + 2)^2 = 4(y - 2) is:
```

- a) (-2, -2)
- b) (3, -2)
- c) (-2, 3)
- d) (-2, 2)
- (v) If $b^2 = a^2 (e^1 1)$, then the conic is:
 - a) Parabola
 - b) Ellipse
 - c) Hyperbola
 - d) Circle

(vi) $\vec{a} \cdot \vec{b} \times \vec{c} =:$

- a) $\vec{a}\vec{b}\vec{c}$
- b) $\vec{a}x\vec{b}x\vec{c}$
- c) $\vec{a}.\vec{b}.\vec{c}$
- d) $\vec{a} \times \vec{b} \cdot \vec{c}$
- (vii) If \vec{a} and \vec{b} are perpendicular then \vec{a} . \vec{b} =:
 - a) 1
 - b) -1
 - c) 0
 - d) π/2
- (viii) if f(x) = sinx cosx, then f(x) is:
 - a) even
 - b) odd
 - c) both even and odd
 - d) neither even nor odd
- (ix) if $f: R \longrightarrow R$ is given $f(x) = \sqrt{x}$, then f(16) =:
 - a) -4
 - b) 6
 - c) 4
 - d) 8
- (x) Every liner equation represent a:
 - a) Straight line
 - b) Circle
 - c) Curve
 - d) Point

Time: 2 Hours 40 Minutes

SECTION 'B' (SHORT - ANSWER QUESTIONS)

NOTE: Answer any 10 questions from this section. At least three question from each section.

SECTION B (Analytic Geometry) (Straight Line & Vector Algebra)

2.

- (i) Prove that the points, whose coordinates are (5, 1), (1, -1) and (11, 4), lie on a straight line. Find the Intercepts made by this line on the axes.
- OR Find the measure of the angle from a line with slope -2/3 to:
 - a) y axis
 - b) x -axis.
- (ii) Find .the value of k when the vertices of the triangle are the points (2, 9), (-2, 1) & (k, 3) & its area is 28 square unit
- (iii) The gradient of one of the lines $ax^2 + 2hxy + by^2 = 0$ is five times that of the other. Show that $5h^2 = 9ab$.
- (iv) Find the unit vector perpendicular to both of the vectors $\vec{a} = \hat{i} + 2\hat{j} + 4\hat{k}$ and $\vec{b} = 3\hat{i} 2\hat{j} + 4\hat{k}$. Also calculate sine of the angle between the given vectors.

OR Find $\cos\theta$, where θ is the angle between vectors $2\hat{i} - \hat{j} + 3\hat{k}$ and $-\hat{i} - 4\hat{j} + 2\hat{k}$.

(v) Resolve the vector i = (6, 8, -6) in the direction of vectors $p_1 = (1, -1, 2)$, $p_2 = (2, 2, -1)$ and $p_3 = (3, 7, -7)$

ANALYTIC GEOMETRY (CONIC SECTIONS)

3.

- (i) Find the equation of the circle containing the points (-1, -1) and (3, 1) and with the center on the line x y + 10 = 0.
- (ii) Show that lines x = 5 and y = 7 both touch the circle $x^2 + y^2 4x 8y + 11 = 0$.
- (iii) Find the equation of the parabola whose focus is (3, 4) and the directrix is the line x + y 1 = 0.
- (iv) Find the center foci and equations of directories of the hyperbola $\frac{(x+2)^2}{4} \frac{(y-1)^2}{9} = 1$
- (v) Find the eccentricity of an ellipse whose latus rectum is equal to half of its major axes.
 OR The length of the major axis of an ellipse is 25 & its foci are the points (±5, 0). Find the equation of the ellipse.

CALCULUS

4.

- (i) Find the derivative, by the first principle, at x = aD(f) of the function f(x) = tan x OR f(x) = sin 2x.
- (ii) Evaluate any Two of the following:

a)
$$\lim_{x \to 0} \frac{\sin^2(\frac{x}{3})}{x^2}$$

b)
$$\lim_{x \to 0} \frac{3e^x - e^{-x} - 2}{x}$$

c)
$$\lim_{x \to 0} \frac{tanx - sinx}{sin^3 x} \text{ OR } \lim_{x \to 0} \left(1 + \frac{3}{t}\right)$$

(iii) Calculate the approximate value of $\cos 46^{\circ}$ OR $\cos 59^{\circ}$ using differentials.

(iv) Two polynomial functions f and g are defined by $f(x) = x^2 - 3x + 4$ and g(x) = x + 1, $\forall x \in \mathbb{R}$. Show that fog is not equal to gof.

(v) Find the area above x - axis, under the curve, $n \frac{x^2}{4} + \frac{y^2}{9} = 1$ between the ordinates x = -1 and x = 1.

OR Solve the differential equation: $\frac{dy}{dx} = \frac{(1+x^2)}{\sin 3y}$

SECTION 'C' (DETAILED - ANSWER QUESTIONS)

5. Evaluate any four of the following:

(i)
$$\int \frac{1}{-1} \frac{3x^2 + 1}{(x^3 + x + 6)^{\frac{1}{2}}} dx$$
 OR $\int \frac{1}{x}\sqrt{2x^2 + 3} dx$ (ii) $\int \frac{x + 3}{x^2 + 2x + 5} dx$
(iii) $\int \sqrt{4 - x^2} dx$ (iv) $\int \frac{2x - 1}{x(x - 1)(x - 3)} dx$
(Using trigonometric substitution)
(v) $\int x^2 \tan^{-1} x dx$ (vi) $\int \cos^4 x dx$

- 6. (a) The area of a triangle is 8. square units, two of its. vertices are the points A (1,-2) and 8 (2, 3) an the third vertex C lies on the line 2x + y 2 = 0. Find the coordinates of the vertex C.
 - (b) Prove that the line tx + my + n = 0 and the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2}$ have just one point in common, if $a^2 l^2 + b^2 m^2 n^2 = 0$
- 7. (a) A is two thirds the way from (1, 10) to (-8, 4) and B is the mid-point of (0 -7) and (6, -11). Find the distance AB.
 - (**b**) Evaluate $\frac{dy}{dx}$ of any two of the following:

i.
$$\sqrt{x^2 + y^2} = in (x^2 - y^2)$$

ii. $y = cos^{-1} \left(\frac{2x}{y^2}\right)$

$$\begin{array}{c} \text{II.} \quad \text{y} = \cos \left(\frac{1}{1 - x^2}\right) \\ \text{III.} \quad \text{II.} \quad \text{$$

iii. $x = a(\theta - \sin\theta), y = a(1 - \cos\theta)$

OR Find the maximum and minimum value of the function $f(x) = x^3 - 9x^2 + 15x + 3$, $\forall x \in \Re$.

MATHEMATICS

Time: 20 Minutes

SECTION "A" (MULTIPLE CHOICE QUESTION)

- 1. Choose the correct answer for each from the given option:
- (i) If f: [-1, 5] R is defined by $f(x) = x^2$ then then f(-2) =:

(b) -2

(c) Undefined

2016

Max. Marks: 20

(d) -4 $\lim_{x \to 0} \frac{e^x - 1}{x} =:$ (ii) (a) $e^{z} \ln a$ (b) 1

- (c) In x
- (d) $\frac{1}{\ln x}$

The slope of a straight line which bisect the first and third quadrants is: (iii)

- (a) 1
- (b) 0
- (c) -1
- (d) ∞

The area of triangle whose vertices are (0,0), (2,0) and (4,0) is: (iv)

- (a) 8 sq. units
- (b) 4 sq. units
- (c) 2 sq. units
- (d) 1 sq. units

If the equation of a straight line is 3x - y + 5 = 0, then the point (1, 2) lies: (v)

- (a) above the line
- (b) below the line
- (c) on the line
- (d) on both sides of the line

The radius of the circle $x^2 y^2 + 2gx + 2fy + c = 0$ is: (vi)

a)
$$\sqrt{g^2 + f^2 + c}$$

b) $\sqrt{c - g^2 - f^2}$
c) $\sqrt{g^2 - f^2 - c}$

d)
$$\sqrt{g+f-c}$$

The length of latus rectum of the parabola $x^2 = -28y$ is: (vii)

- a) 7
- b) 28
- c) 192
- d) -7

The equations of the directories of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are: (viii)

- a) $x = \pm a$
- b) $y = \pm a$
- c) $x = \pm a/e$
- d) $y = \pm 1/a$

The vertex .of the parabola $(x + 2)^2 = 4(y - 2)$ is: (ix)

- a) (-2, -2)
- b) (3, -2)
- c) (-2, 3)
- d) (-2, 2)

The point of concurrency of the medians of a triangle is called: (X)

- (a) In Centre
- (b) Centroid
- (c) Orthocenter

Time: 2 Hours 40 Minutes

SECTION 'B' (SHORT - ANSWER QUESTIONS)

NOTE: Answer any 10 questions from this section. At least three question from each section.

SECTION B (Analytic Geometry) (Straight Line & Vector Algebra)

2.

- Find the ratio in which y-axis divides the join of (-5, 3) and (8, 6). Also find the coordinates of the point (i) of division.
- Find the equation of the line which passes through the point (-2, -4) and has sum of Intercepts equal to 3 (ii)
- Find the value of k for which the two lines (k,1) x + ky 5 = 0, kx + (2k 1) y + 7 = 0 Intersect at a point (iii) lying on the axis of x.
- Prove that the point (5, -7.5) lies outside the circle whose equation is $x^2 + y^2 4x + 2y = 44$ (iv)
- Find the equation of a circle with center at the point (1, -1) and touching the straight line 5x + 12 = 7. (v)
- Find the equation of the parabola with focus (2, 3) and directrix y 5 = 0. (vi)
- The length of the major axis of an ellipse is 25 units and its foci are the points $(\pm 5, 0)$. Find its equation. (vii)
- Find the eccentricity foci, directories and length of the latus rectum of the hyperbola $9x^2 y^2 + 1 = 0$. (viii)
- A particle is acted upon by constant forces $4\hat{i} + \hat{j} 3\hat{k}$ and $3\hat{i} + 4\hat{j} \hat{k}$ and its displaced from the (ix) point $\hat{i} + 2\hat{j} - 3\hat{k}$ to the point $5\hat{i} + 4\hat{j} - 3\hat{k}$ find the work done by forces.
- Prove that $\begin{bmatrix} \vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$ (x)

CALCULUS

Note: Attempt 3 part questions from this section.

3.

- Find the limit of the sequence $\frac{1.2}{3.4}, \frac{3.4}{5.6}, \frac{5.6}{7.8}, \dots$ (i)
- (ii) Find the derivative by the first principles at x = a in the domain D(f) of the function $f(x) = \tan x$ **OR** Evaluate any two of the following

(a)
$$\lim_{x \to 0} \frac{1 - \cos x}{\sin x}$$
 (b)
$$\lim_{x \to 0} \frac{3e^x - e^{-x} - 2}{x}$$

(c)
$$\lim_{x \to 1} \left[\frac{1}{1 - x} - \frac{3}{1 - x^3} \right]$$

- Fin $\frac{dy}{dx}$ of any two of the following: a) $y = \tan^2 x + incosx$ (iii)

b)
$$2x^2 - 3xy + y^2 = 5$$

- c) $x = In t + \cos t$, $y = e^t + \sin t$
- Using differentials, find the approximate value of cos 44° (iv)
- Evaluate any two of the following: (xv)

Marks: 80

(a)
$$\int \frac{dx}{\sqrt{1+x}-\sqrt{x}}$$
 (b) $\int \frac{\cos \ln x \, dx}{x(3-\sin \ln x)^{\frac{1}{2}}}$ (c) $\int \ln x \, dx$

SECTION 'C' (DETAILED - ANSWER QUESTIONS)

4.

- (a) Find the equation of the locus of a. moving point such that the slope of line Joining the point to A (1, 3) is three times the slope of the line joining the point to 8 (3, 1).
- (b) The point (2, -5) is a vertex of a square, one of whose sides lies on the line z 2y 7 = 0. Calculate the area of the square.
- 5.
- (a) if $y = ae^x + be^{2x} + ce^{3x}$, show that $\frac{d^3y}{dx^3} 6\frac{d^3y}{dx^2} + 11\frac{dy}{dx} 6y = 0$.
- (b) Find the maximum and minimum values of the function $f(x) = e^x \sin x$.
- **6.** (a) Evaluate any two of them:

(i)
$$\int \frac{\tan x}{\ln(\cos x)} dx$$
 (ii) $\int \frac{2x}{(1-x^2)(3+x^2)}$
(iii) $\int_{1}^{2} (x+1)\sqrt[3]{x^2+2x+2} dx$

OR (i) Find the area above the x-axis under the curve y = tan x between the ordinates $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$.

(ii) Solve the differential equation $\frac{dy}{dx} = \sqrt{xy}$ where y (9) = 100.

(b). Prove that parabolas $x^2 = 4ay$ and $y^2 = 4bx$ intersect at angle $\theta = \tan^{-1} \frac{3}{2} \left[\frac{a^{\frac{1}{3}}b^{\frac{1}{3}}}{a^{\frac{2}{3}} + b^{\frac{2}{3}}} \right]$

MATHEMATICS

Time: 20 Minutes

2015

Max. Marks: 20

SECTION "A" (MULTIPLE CHOICE QUESTION)

- 1. Choose the correct answer for each from the given option:
- (i) If $b^2 = a^2 (1 e^2)$, then the conic is:
 - a) Circle
 - b) Parabola
 - c) Hyperbola
 - d) Ellipse
- (ii) In the parabola $y^2 = 4ax$, 14al represents:
 - a) Focus
 - b) Vertex
 - c) Axis
 - d) length of latus rectum

If vectors \vec{a} and \vec{b} are perpendicular, then $\vec{a} \cdot \vec{b} = :$ (iii) a) 1 b) -1 c) 0 d) $\pi/2$ Magnitude of a vector $(1, -\sqrt{3}, -\sqrt{5})$ is: (iv) a) 9 b) 3 c) $\sqrt{3}$ d) $\sqrt{5}$ The function $f(x) = \cos x$ is: (v) a) Even b) Odd c) Modulus d) Inverse If f: [-1, 5] R is defined by $f(x) = x^2$ then then f(-2) =: (vi) a) 4 b) -2 c) Undefined d) -4 $\lim_{x \to 0} \frac{e^x - 1}{x} =:$ (vii) a) $e^{z} \ln a$ b) 1 c) In x d) $\frac{1}{\ln x}$ (viii) The slope of a straight line which bisect the first and third quadrants is: a) 1 b) 0 c) -1 d) ∞ The area of triangle whose vertices are (0,0), (2,0) and (4,0) is: (ix) a) 8 sq. units b) 4 sq. units c) 2 sq. units d) 1 sq. units If the equation of a straight line is 3x - y + 5 = 0, then the point (1, 2) lies: (x) a) above the line b) below the line c) on the line

d) on both sides of the line

Time: 2 Hours 40 Minutes

SECTION 'B' (SHORT - ANSWER QUESTIONS)

NOTE: Answer any 7 questions from this section. At least three question from each section.

SECTION B (Analytic Geometry) (Straight Line & Vector Algebra)

2.

(i) Find the co-ordinates of the foot of perpendicular from (-2, 5) to 3x + y + 11 = 0.

(ii) Using slopes, prove that (12, 8), (-2, 6) and (6, 0) are the vertices of a right triangle.

(iii)Show that the points (5, 1), (1, -1) and (11, 4) lie an straight line. Find its equation.

(iv)The area of a triangle \cdot Is 8 square unit, two of its vertices are the points A (1,-2) and 8 (2, 3) and third vertex C lies on the line 2x + y - 2 = 0. Find co-ordinates of -vertex C.

(v) Find the equation of the circle containing the points (-1, -1) and (3, 1) and the line x - y + 10 = 0 passing through the center of the circle.

(vi)Find the eccentricity of an ellipse whose length of latus rectum is half of its major axes.

(vii) Prove that the two circle $x^2 + y^2 + 2gx + c = 0$ and $x^2 + y^2 + 2fy + c = 0$ touch each other if $\frac{1}{f^2} + \frac{1}{a^2} = \frac{1}{c}$.

(viii) Find center, foci and equation of directices of hyperbola $\frac{(x-1)^2}{4} - \frac{(y-2)^2}{9} = 1$.

OR Find the equation of circle whose diameter is the length of latus rectum of parabola $x^2 = 36y$.

(ix)Find constant 'a' such that the sets of vectors $2\hat{i} - \hat{j} + \hat{k}, \hat{i} + 2\hat{j} - 3\hat{k}, 3\hat{i} + a\hat{j} + 5\hat{k}$ are coplanar.

OR Calculate Sin $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$.

(x) Resolve the vector 'a' in a plane in the direction of $P_1 P_2$, where a = (9, 4), $P_1 = (2, -3)$, $P_2 = (1, 2)$.

CALCULUS

Note: Attempt 3 part questions from this section.

3.

(i) Find the derivative by First Principia at x = a in the domain of D(f) of f (x) = cosec x OR f (x) = $3x^2 + x$.

(ii) Evaluate any two of the following:

(a)
$$\lim_{x\to 0} \frac{1-\cos x}{\sin x}$$
 (b) $\lim_{x\to 0} \frac{\sqrt{x^2+16}-4}{x}$ (c) $\lim_{x\to \infty} \frac{2t^2-2t+1}{t^2+4}$

OR Determine the limit of the sequence $\frac{1}{1.2}$, $\frac{1}{2.3}$, $\frac{1}{3.4}$

- (iii) Calculate the approximate value of $\log_{10}(10.1)$, given that $\log_{10} e = 0.4343$.
- (iv) Calculate the approximate value of $\sin 46^{\circ}$ by using differential.
- (v) Evaluate any two of the following:

a)
$$\int (ax^2 + bx + c)^{-2/3} \cdot \left[x + \frac{b}{c}\right] dx$$

b)
$$\int cos5x. sin3x \, dx$$

c)
$$\int \frac{x^2}{\sqrt{1-x^6}} dx$$

SECTION 'C' (DETAILED - ANSWER QUESTIONS)

- (a) Find the equation of the two straight lines passing through (3, -2) and inclined at 60° to the line $\sqrt{3} x + y = 1$,
- (b) Find the equation of circle passing through the focus of parabola $x^2 + 8y = 0$ and foci of ellipse, $16x^2 + 25y^2 = 400$.

OR Prove that the line Ix + my + n = 0 and the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ have just one point in common if $a^2i^2 + b^2m^2 - n^2 = 0$.

4.

(a) Evaluate any two of the following:

i.
$$\int \frac{7x-25}{(x-3)(x-4)} dx$$

ii.
$$\int x \cdot tan^{-1}x dx$$

iii.
$$\int \frac{x^3}{\sqrt{a^2 - x^2}} dx$$

iv.
$$\int_0^2 \frac{dx}{\sqrt{a^2 - x^2}}$$

1v. J₀ y - x²
(b) If the line y - 2 = 0, intersects the pair of lines x² -7xy + 2y² = 0 in A and B and 'O' be the origin. Find the area of triangle OAB.

5.

- (a) (i). Find the area under the curve $y = 3 \sin x$ between the ordinates x = 0 and $x = \pi/3$ (ii) Solve the differential equation: $\frac{dy}{dx} = x \cos^2 y$.
- (b) Find the extreme value of the function f given by f(x) = x(x-1)(x-2), $\forall x \in \Re$.

MATHEMATICS

2014

Time: 20 Minutes

Max. Marks: 20

SECTION "A" (MULTIPLE CHOICE QUESTION)

1.

- (i) Magnitude of the vector $\vec{a} = 3\hat{\iota} \hat{j} + 2\hat{k}$ is:
 - a) 13
 - b) √12
 - c) $\sqrt{14}$

d)
$$\sqrt{11}$$

(ii)
$$\lim_{x \to 0} \frac{\sin 2x}{x}$$

- a) $0^{x \rightarrow}$
- b) 1
- c) $\frac{1}{2}$

(iii) A function $f(x) = |x| - x^2$ is:

- a) Odd
- b) Even
- c) Neither even nor odd

- d) Modulus
- (iv) The vertex .of the parabola $(x + 2)^2 = 4(y 2)$ is:
 - a) (-2, -2)
 - b) (3, -2)
 - c) (-2, 3)
 - d) (-2, 2)
- (v) If $b^2 = a^2 (e^1 1)$, then the conic is:
 - a) Parabola
 - b) Ellipse
 - c) Hyperbola
 - d) Circle

(vi) $\vec{a}.\vec{b} \times \vec{c} =:$

- a) $\vec{a}\vec{b}\vec{c}$
- b) $\vec{a}x\vec{b}x\vec{c}$
- c) $\vec{a}.\vec{b}.\vec{c}$
- d) $\vec{a} \times \vec{b} \cdot \vec{c}$
- (vii) If \vec{a} and \vec{b} are perpendicular then \vec{a} . \vec{b} =:
 - a) 1
 - b) -1
 - c) 0
 - d) π/2
- (viii) if f(x) = sinx cosx, then f(x) is:
 - a) even
 - b) odd
 - c) both even and odd
 - d) neither even nor odd
- (ix) if $f: \mathbb{R} \longrightarrow \mathbb{R}$ is given $f(x) = \sqrt{x}$, then f(16) =:
 - a) -4
 - b) 6
 - c) 4
 - d) 8
- (x) Every liner equation represent a:
 - a) Straight line
 - b) Circle
 - c) Curve
 - d) Point

MATHEMATICS

Time: 2 Hours 40 Minutes

SECTION 'B' (SHORT - ANSWER QUESTIONS)

NOTE: Answer any 7 questions from this section. At least three question from each section.

SECTION B (Analytic Geometry) (Straight Line & Vector Algebra)

2014

Marks: 80

2.

- (i) If the line through (2, 5) and (-3, -2) is perpendicular to the through (4, -1) and (x, 3), find x.
- (ii) Find the combined equation of the pair of lines through the origin which are perpendicular to the lines Represented by $6x^2 - 13xy + 6y^2 = 0$. **OR** The gradient of one of the lines $ax^2 + 2hxy + by^2 = 0$ is two times that of the other. Show that $8h^2 = 9ab$
- (iii) Find the distance two parallel lines 5x 12y + 10 = 0 and 5x 12y 16 = 0.
- (iv) Fine the equation of the parabola having focus (-5, 3) and directrix y 7 = 0
- (v) Find _the equation of the circle which is concentric with the circle $x^2 + y^2 8x + 12y 12 = 0$ and passes through the point (5, 4).
- (vi) Find the center, focus and eccentricity of the ellipse $\frac{(x-3)^2}{25} + \frac{(y+1)^2}{9} = 1$.
- (vii) Find the equation of the hyperbola with focus (8, 0) and directrix x = 4.
- (viii) A particle, acted upon by the forces 4î+j-3k and 3i -j-k is displaced from the point (1, 2, 3) to point (5, 4, 1). Find the work done.
- (ix) Find the unit vector perpendicular to both the vectors $\hat{i}+2j+2k$ and $3\hat{i}-2j-4k$. Also find sine of the angle them.

OR Simplify: $\left[\overline{a}, \overline{2b} - \overline{3c}, -\overline{2a} + \overline{b} + \overline{c}\right]$

(x) Find- the equation of the line passing through the intersection of the lines 2x+3y+1=0, 3x-4y-5=0 and passing through the point (2, 1).

OR Find the equation of the locus of the points which are equidistance from the point (0, 3) and the line y + 3 = 0.

CALCULUS

Note: Attempt any three part question from this section.

3.

- (i) Find the derivative by first principle at x = a is the domain of D(f) of $f(x) = \cot x$ OR $f(x) = 3x^3 x$.
- (ii) Evaluate any two of the following:

a)
$$\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n}$$

b)
$$\lim_{x \to a} \frac{\sqrt{x^2 + 16 - 4}}{x}$$

- c) $\lim_{x \to a} \frac{\tan x \sin x}{x}$ OR Find the limit of the sequence $\frac{1.2}{3.4} + \frac{3.4}{5.6} + \frac{5.6}{7.8} + \dots$
- (iii) Find $\frac{dy}{dx}$ of any two of the following:

a)
$$e^x In y = \sin^{-1} y$$

b)
$$\sqrt{x^2 + y^2} = In (x^2 - y^2)$$

c)
$$x^{y}.y^{x} = 10$$

(iv) Evaluate any two of them:

$$(a) \int \left(\sqrt{x} - \frac{1}{\sqrt{x}} \right) dx \quad (b) \int x \ln x \, dx$$

$$(c) \int \frac{\sin(\ln x) \, dx}{x \, (3 - \cos \ln x)^{\frac{1}{2}}}$$

(v) Using differential, show that $\sqrt{x} + \frac{1}{\sqrt{x}} dx$. Hence, find the value of $\sqrt{3.9}$ OR Calculate an approximate value of tan 44° by using differential.

SECTION 'C' (DETAILED - ANSWER QUESTIONS)

4.

(a) Find the equation of circle passing through the focus of parabola $x^2 + 8y = 0$ and foci of ellipse $16x^2 + 25y^2 = 400$.

<u>OR</u> Determine the vertex, focus and the equation of directrix of $y^2 + 4y + 3x - 92 = 0$.

(b) Find the condition that conics $ax^2 + by^2 = 1$ and $a! x^2 + b! y^2 = 1$ cut each other orthogonally.

5.

(a) Evaluate any Two of the following:

$$(i) \int_{0}^{1} \frac{dx}{\sqrt{4-x^{2}}} \quad (ii) \int \frac{2x \, dx}{\cos^{2} 2x} \quad (iii) \int \frac{\sin x \, dx}{(1+\cos x)(2+\cos x)}$$

(b) Show that the eccentricities e_1 and of two conjugate hyperbola satisfy the relation $e_1^2 + e_2^2 = e_1^2 e_2^2$.

OR If
$$y = \sqrt{5}x + k$$
 is tangent to the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. What is k?

6.

(a) (i) Solve the differential equation: $2+2y\frac{dy}{dx} = 1 + 3x^2$, y(2) = 1

$$OR \frac{du}{dv} = \sqrt{u. v} \quad u = 100, v = 9$$

(ii) Find the area under curve $y = x - \frac{5}{x^2}$ between the ordinates x = 2, x = 4.

(b) Find the relative maximum and minimum value of the function sin x OR $f(x) = x^3 - 9x^2 + 15x + 3$.

MATHEMATICS

Time: 20 Minutes

2013

Max. Marks: 20

SECTION "A" (MULTIPLE CHOICE QUESTION)

1.

- (i) The slope of the bisector of the 1st & the 3rd qiatramt os"
 - a) 0
 - b) -1
 - c) 1
 - ∞ (b

(ii) The distance of point (2,3) from x – axis is:

- a) 5
- b) 3
- c) 2

d) 1

(iii) The length of the tangent from the point (1,2) to the circle $x^2 + y^2 - 2 = 0$ is:

- a) $\sqrt{2}$
- b) 1
- c) $\sqrt{6}$
- d) $\sqrt{3}$

(iv)Two lines, represented by $az^2 + 2hxy + by^2 = 0$, where a, h, b are not all zero, will be orthogonal, if:

- a) a b = 0
- b) a + b = 0
- c) h = 0
- d) a = 0

(v) The radius of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is:

- a) $\sqrt{g^2 + f^2 c}$ b) $\sqrt{g^2 + f^2 + c}$ c) $\sqrt{g^2 - f^2 - c}$ d) $\sqrt{g^2 + f^2 - c^2}$
- (vi) $\frac{d}{dx} \ln x^2 =:$ a) ax⁰⁻¹
 - b) a/x
 - c) x²lnx
 - d) $a^2 \ln a$

(vii) The necessary condition for f(x) to have entreme value is:

- a) f'(x) = 0
- b) f'(x) = 0
- c) f(x) = 0
- d) f'(x) = 1

(viii) $\int x^{-1} dx =:$

- a) Xo + c
- b) 1/x + c
- c) $1/x^1 + c$
- d) In x + c

 $(ix)\int cosec^2 x \, dx =:$

- a) -cosecx + c
- b) $-\cot x + c$
- c) Cos ecx cot x + c
- d) In $\cot x + c$

(x) The distance between foci of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is:

- $\frac{2a}{e}$ a)
- b) 2a
- c) 2ae
- d) $\frac{2b^2}{a}$

(xi) If e = 3/2, then the conic is a / an :

- a) Circle
- b) Ellipse
- c) Parabola
- d) hyperbola

MATHEMATICS

Time: 2 Hours 40 Minutes

Marks: 80

2013

SECTION 'B' (SHORT - ANSWER QUESTIONS)

NOTE: Answer any 7 questions from this section. At least three question from each section.

SECTION B (Analytic Geometry) (Straight Line & Vector Algebra)

2.

- If the line through (2, 5) and (-3, -2) is perpendicular to the line through (4, -1) and (x, 3), find x. (i)
- (ii) Find the equation of the line which passes through the point (-3, -4) and has the sum of intercepts equal to 1.
- (iii) Find the value of K when the vertices of the triangle are the points (2, 6), (6, 3) & (4, k) and area is 15 units.
- The gradient of one of the lines $ax^2 + 2hxy + by = 0$ is five times that of the other. Show that $5h^2 = 9ab$. (iv)
- (v) Find equation of the circle touching each of the axes in 4th quadrant at a distance of 5 units from the origin.
- Find equation of the circle which is concentric with the circle $x^2 + y^2 8x + 12y + 15 = 0$ and passes (vi) through the point (5, 4).
- Determine the vertex, focus and equation of directrix of the curve $x^2 + 4x + 4y 12 = 0$. (vii)
- Find equation of the hyperbola having focus (8, 0) and directrix x = 4. OR Find the eccentricity, foci and (viii) equations of directories of $25x^2 + 9y^2 = 225$.
- Find sin $(\overline{a}, \overline{b})$ where $\overline{a} = \hat{i} = 3\hat{j} + 4\hat{k}$ and $\overline{b} = -3\hat{i} 3\hat{k}$. (ix)
- Find volume of the parallelepiped whose three adjacent edges are represented by the vectors $\vec{a} = 2\hat{i}$ (x) $3\hat{j} + 4\hat{k}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}$ and $\vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}$.

CALCULUS

Note: Attempt 3 part questions from this section.

3.

- Find the derivative by the first principles at x = a in the domain D(f) of $f(x) = \sin 2x$. (i)
- Evaluate any Two of the following: (ii)

(a)
$$\lim_{\theta \to \frac{\pi}{2}} \frac{\cot \theta - \cos \theta}{\cos^3 \theta}$$
 (b)
$$\lim_{x \to 0} \frac{e^{mx} - e^{nx}}{x}, m, n \in \mathbb{R}$$

(b)
$$\lim_{x \to 0} \frac{x}{\sqrt{1 - \cos x}}$$
 OR
$$\lim_{x \to 1} \left[\frac{1}{1 - x} - \frac{3}{1 - x^3} \right]$$

Find $\frac{dy}{dx}$ of any two of the following: (iii) (a) $y = e^{\sin x + \cos x}$ (b) $y = (\sin^{-1} x)^3$

(c)
$$y = \sqrt[5]{(x^2 + 2x + 3)}$$

(iv) Evaluate any two of the following:

a)
$$\int \frac{dx}{\sqrt{1+x} + \sqrt{x}}$$

b)
$$\int \frac{dx}{9 - x^2}$$

c)
$$\int \cos 4x \cos 2x \, dx$$

Using diff. show that $\sqrt{x + \Delta x}$ can be approximated to $\sqrt{x} + \frac{1}{\sqrt{x}} \Delta x$. Hence find the value of $\sqrt{9.1}$. (v)

OR Find the nth term and the limit of the sequence: $\frac{1.3}{2.4}, \frac{3.5}{4.6}, \frac{5.7}{6.8}, \dots$ where dot "." Represents multiplication

SECTION 'C' (DETAILED - ANSWER QUESTIONS)

4.

- (a) Equation of a curve is given by $x^2 2xy + y^2 + 2x 4 = 0$, find slope of the curve at the point (2, 2).
- (b) Find equation of the circle containing the (-1, -1) and (3, 1) and with the center on the line x- y + 10 = 0

5.

- (a) Evaluate any Two of the following:
- (i) $\int \frac{\cos x \, dx}{\sin x(2 + \sin x)}$ (ii) $\int \frac{\sec \tan x \, dx}{\sec \tan x \, dx}$

(11)
$$\int \frac{a+b \sec x}{a+b \sec x}$$

 $\int_0^{\frac{\pi}{2}} \cos^4 x \, dx$ (iii)

(b) Prove that line Ix + my + n = 0 & the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ have just one point in common if $a^2 I^2 + b^2 m^2 - n^2 = 1$ 0.

- (a) (i). Find the area under the curve $y = 3x^4 2x^3 + 1$, above x-axis and between x = 1 and x = 2. (ii). Solve the differential equation $dy / dx = y^2 \sin x$.
- (b) Find the relative maximum and relative minimum values of the function $f(x) = \frac{lnx}{r}$.

Time: 20 Minutes

2012

SECTION "A" (MULTIPLE CHOICE QUESTION)

1.

- (i) If $b^2 = a^2 (e^1 1)$, then the conic is:
 - a) Parabola
 - b) Ellipse
 - c) Hyperbola
 - d) Circle

(ii) $\vec{a}.\vec{b} \ge \vec{c} =:$

- a) $\vec{a}\vec{b}\vec{c}$
- b) $\vec{a}x\vec{b}x\vec{c}$
- c) $\vec{a}.\vec{b}.\vec{c}$
- d) $\vec{a} \times \vec{b} \cdot \vec{c}$
- (iii) If \vec{a} and \vec{b} are perpendicular then \vec{a} . \vec{b} =:
 - a) 1
 - b) -1
 - c) 0
 - d) π/2
- (iv) if $f(x) = \sin x \cos x$, then f(x) is:
 - a) even
 - b) odd
 - c) both even and odd
 - d) neither even nor odd
- (v) if $f: R \longrightarrow R$ is given $f(x) = \sqrt{x}$, then f(16) =:
 - a) -4
 - b) 6
 - c) 4
 - d) 8
- (vi) Every liner equation represent a:
 - a) Straight line
 - b) Circle
 - c) Curve
 - d) Point

(vii)

(viii) The radius of the circle $x^2 y^2 + 2gx + 2fy + c = 0$ is:

a)
$$\sqrt{g^2 + f^2 + c}$$

b) $\sqrt{c - g^2 - f^2}$
c) $\sqrt{g^2 - f^2 - c}$

d)
$$\sqrt{g+f-c}$$

(ix) The length of latus rectum of the parabola $x^2 = -28y$ is:

- a) 7
- b) 28

- c) 192
- d) -7

(x) The equations of the directories of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are:

- a) $x = \pm a$
- b) $y = \pm a$
- c) $x = \pm a/e$
- d) $y = \pm 1/a$

MATHEMATICS

Time: 2 Hours 40 Minutes

SECTION 'B' (SHORT - ANSWER QUESTIONS)

NOTE: Answer any 7 questions from this section. At least three question from each section.

SECTION B (Analytic Geometry) (Straight Line & Vector Algebra)

- 2.
- (i) A straight line passes through the points A (-12, -13) and B (-2, -5). Find the point on the line whose ordinate is -1
- (ii) Find the equation of a line which passes through the point (-1, 2) and has sum of equal to 2.
- (iii) Find the equation of a line through the intersection of the lines 7x 13y + 46 = 0, 19x + 11y 41 = 0 and passing through the point (3, 1) by using K-method.
- (iv) The point (-2, 1) is a vertex of a rectangle whose sides lie on the lines 3x 2y 5 = 0, 2x + 3y + 7 = 0. Find area of the rectangle.
- (v) Find the equation of circle concentric with the circle $x^2 + y^2 + 6x 10y + 33 = 0$ and touching the y-axis.
- (vi) Prove that the straight line $y = x + c\sqrt{2}$ touches the circle $x^2 + c^2$, and find point of contact.
- (vii) Find the equation of parabola with focus (2, 3) and directrix y 5 = 0.
- (viii) Find the equation of ellipse whose center is at (0, 0), $e = \frac{2}{3}$, latus rectum of length $\frac{20}{3}$ and major axis is along x-axis.

OR Find the eccentricity, foci and equations of directories of hyperbola $9x^2 - y^2 + 1 = 0$.

- (ix) Find the unit vector perpendicular to both the vectors $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$
- (x) A particle acted upon the forces $4\hat{i} + \hat{j} 3\hat{k}$ and $3\hat{i} + \hat{j} \hat{k}$ is displaced from the point P (1, 2, 3) to the point Q (5, 4, 1). Find the work done.

CALCULUS

Note: Attempt 3 questions from this section.

3.

- i. Find the derivative by the first principles at any point x in the domain D(f) of the function $f(x) = \cos^2 x$.
- ii. Evaluate any Two of the following:

2012

Marks: 80

b)
$$x^{y}.y^{x} = 1$$

c)
$$x = sint^3 + cost^3$$
, $y = sint + 2cos^{-1}t$

Evaluate any two of the following:

a)
$$\int \sin 4y \sin 2y \, dy$$

b) $\int_0^a \frac{dx}{(x^2 + a^2)^{3/2}}$

$$\int dy dy$$

c)
$$\int \frac{dy}{\sqrt{4y-y^2}}$$

v. By using differentials, calculate an approximate value of $\cos 44^{\circ}$. **OR** Two polynomial functions f and g are defined by $f(x) = x^2 - 3x + 4$ and g(x) = x + 1, $\forall x \in \Re$ Find fog; gof and show that fog \neq gof.

SECTION 'C' (DETAILED - ANSWER QUESTIONS)

Note attempt any two question:

4.

iii.

iv.

- a) The vertices A, B and C of a triangle are (2, 1), (5, 2) & (3, 4) respectively. Find the coordinates of the circum-center and radius of the circumcircle of the triangle ABC.
- b) Find the condition that conic $ax^2 + by^2 = 1$ should cut $a/x^2 + b/y^2 = 1$ orthogonally.

5.

(a) Evaluate any Two of the following:

(b) Prove that the angle between the conics $x^2 = 4ay$ and $y^2 = 4bx$ at a point other than the origin is:

$$\theta = \tan^{-1} \frac{3}{2} \left[\frac{a^{\frac{1}{3}} b^{\frac{1}{3}}}{a^{\frac{2}{3}} b^{\frac{2}{3}}} \right].$$

6.

(a) (i) Solve the following differential equation: $2 + 2y \frac{dy}{dx} = 1 + 3x^2$, y(2) = 1

(ii) Find the area above x-axis under the circle $x^2 + y^2 = 4$ and the ordinates $x = \frac{1}{2}$ and $x = \frac{3}{2}$.

(**b**) Find the relative maximum and minimum values of the function $f(X) = 2e^{x} + e^{-x}$.

Time: 20 Minutes

(i)

(ii)

(iii)

SECTION "A" (MULTIPLE CHOICE QUESTION)

1. Choose the correct answer for each from the given option: If f: [-1, 5] R is defined by $f(x) = x^2$ then then f(-2) =: a) 4 b) -2 c) Undefined d) -4 $\lim_{x \to 0} \frac{e^x - 1}{x} =:$ a) $e^{z} \ln a$ b) 1 c) In x d) $\frac{1}{\ln x}$ The slope of a straight line which bisect the first and third quadrants is: a) 1 b) 0 c) -1 d) ∞

The area of triangle whose vertices are (0,0), (2,0) and (4,0) is: (iv)

- a) 8 sq. units
- b) 4 sq. units
- c) 2 sq. units
- d) 1 sq. units
- If the equation of a straight line is 3x y + 5 = 0, then the point (1, 2) lies: (v)
 - a) above the line
 - b) below the line
 - c) on the line
 - d) on both sides of the line

(vi) The radius of the circle
$$x^2 y^2 + 2gx + 2fy + c = 0$$
 is:

a)
$$\sqrt{g^2 + f^2 + c}$$

b) $\sqrt{c - g^2 - f^2}$
c) $\sqrt{g^2 - f^2 - c}$

d)
$$\sqrt{g} + f - c$$

The length of latus rectum of the parabola $x^2 = -28y$ is: (vii)

- a) 7
- b) 28
- c) 192
- d) -7

The equations of the directories of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are: (viii)

- a) $x = \pm a$
- b) $y = \pm a$

Max. Marks: 20

- c) $x = \pm a/e$
- d) $y = \pm 1/a$
- (ix) The vertex .of the parabola $(x + 2)^2 = 4(y 2)$ is:
 - a) (-2, -2)
 - b) (3, -2)
 - c) (-2, 3)
 - d) (-2, 2)
- (x) The point of concurrency of the medians of a triangle is called:
 - a) In Centre
 - b) Centroid
 - c) Orthocenter
 - d) Circumcenter

Time: 2 Hours 40 Minutes

2011

Marks: 80

SECTION 'B' (SHORT - ANSWER QUESTIONS)

NOTE: Answer any 10 questions from this section. At least three question from each section.

SECTION B (Analytic Geometry) (Straight Line & Vector Algebra)

- 2.
- (i) A is two-third the way from (1, 10) to (-8, 4) and B is the midpoint of (0, -7), (6, -11). Find the distance |AB|. Find the equation of the straight line which passes through the point (3, 4) and makes intercept on the axes such that the y-intercept is twice x-intercept.
- (ii) The point (2, 3) is the foot of the perpendicular dropped from the origin to a straight line. Write the equation of this line.
- (iii) Find the distance between the parallel lines 3x + 4y + 10 = 0, +8y 9 = 0.
- (iv) Find the equation of a circle with center at the point (1, -1) and touching the straight line 5x + 12 = 7.
- (v) Find the equation of the parabola with focus (2, 3) and directrix y 5 = 0.
- (vi) The length of the major axis of an ellipse is 25 units and its foci are the points $(\pm 5, 0)$. Find its equation.
- (vii) Find the eccentricity foci, directories and length of the latus rectum of the hyperbola $9x^2 y^2 + 1 = 0$.
- (viii) A particle is acted upon by constant forces $4\hat{i} + \hat{j} 3\hat{k}$ and $3\hat{i} + 4\hat{j} \hat{k}$ and its displaced from the point $\hat{i} + 2\hat{j} 3\hat{k}$ to the point $5\hat{i} + 4\hat{j} 3\hat{k}$ find the work done by forces.
- (ix) Prove that $\begin{bmatrix} \vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$
- (x) Find the volume of the parallelepiped whose three adjacent edges are represented by the vectors: $\underline{a} = 2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}, \underline{b} = \hat{\imath} + 2\hat{\jmath} - \hat{k}$ and $\underline{c} = 3\hat{\imath} - \hat{\jmath} + 2\hat{k}$.

CALCULUS

Note: Attempt 3 part questions from this section.

3.

- (i) Find the derivative by first principles at any point x in the domain D(f) of the function $f(x) = \cot x$.
- (ii) Evaluate any two of the following:

(a)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
 (b) $\lim_{x\to 1} \left(\frac{1}{1-x}-\frac{3}{1-x^3}\right)$ (c) $\lim_{x\to 0} \frac{e^{\lambda x}-e^{\mu x}}{x}$

(iii) Fin $\frac{dy}{dx}$ of any two of the following :

- d) $y = \tan^2 x + incosx$
 - e) $2x^2 3xy + y^2 = 5$
- f) $x = In t + \cos t$, $y = e^t + \sin t$
- (iv) Using differentials, find the approximate value of $\cos 44^{\circ}$
- (v) Show that $\sqrt{x + \Delta x}$ can be approximated to $\sqrt{x} + \frac{1}{2\sqrt{x}}\Delta x$. Hence find approximated value of $\sqrt{3.9}$.

SECTION 'C' (DETAILED - ANSWER QUESTIONS)

Note attempt any two question:

4.

- a) Show that the lines $x^2 4xy + y^2 = 0$ and x + y = 3 form an equilateral triangle. Also find the area of the triangle.
- b) Find the equation of circle containing the point (-1, -1) and (3, 1) and with center on the line x y + 10 = 0.
- 5.
- a) Evaluate any Two of the following:

(i)
$$\int \frac{2x \, dx}{(1+x^2)(3+x^2)}$$
 (ii) $\int \frac{x^3 \, dx}{\sqrt{a^2-x^2}}$ (iii) $\int \frac{\sec x \tan x \, dx}{a+b \sec x}$

b) Find the eccentricity, center, vertices and the foci of the ellipse given by the equation $4x^2 - 16x + 25y^2 + 200y + 316 = 0$.

MATHEMATICS

Time: 20 Minutes

SECTION "A" (MULTIPLE CHOICE QUESTION)

2010

Max. Marks: 20

- 1. Choose the correct answer for each from the given option:
- (i) $\int e^{tanx} \sec^2 x \, dx$ is:
 - a) $e^{\sin x} + c$
 - b) $e^{\sin 2x} + c$
 - c) $e^{tanx} + c$
 - d) $\sec^2 x + c$

(ii) The least upper bond (l.u.b) of $\{-10, -5, 8, -\frac{1}{3}, 15, 21\}$ is:

- a) -10
- b) 8
- c) 15
- d) 21
- (iii) The coordinate of centroid of the triangle whose vertices are (2, 8) (8, 2) and (9, 2) are:
 - a) (3, 4)
 - b) (19, 19)

- c) $\begin{bmatrix} \frac{19}{3} & \frac{19}{3} \end{bmatrix}$
- d) $\begin{bmatrix} \frac{1}{3} & \frac{1}{3} \end{bmatrix}$
- The inclination of x- axis is: (iv)
 - ^{a)} 90°
 - b) 45°
 - c) 0°
 - d) 270°
- The distance of point (3, 2) from x-axis is: (v)
 - a) $\sqrt{3}$ units
 - b) 5 units
 - c) 3 units
 - d) 2 units
- If two or more straight line meet at one point, then the lines are said to be: (vi)
 - a) Concurrent
 - b) Parallel
 - c) Perpendicular
 - d) Coincident

Some of the slopes of the pair of line $ax^2 + 2hxy + by^2 = 0$ is: (vii)

- a) $\frac{a}{b}$ b) $\frac{h}{b}$

c)
$$\frac{-h}{2a}$$

d)
$$\frac{-2h}{h}$$

(viii)
$$\frac{d}{dx}(\operatorname{cosec}^{-1} y)$$
:
a) $\frac{-1}{y\sqrt{y^2-1}}$

b)
$$\frac{y\sqrt{y^2-1}}{y\sqrt{1-y^2}}$$

c)
$$\frac{-1}{y\sqrt{1-y^2}}$$

d)
$$\frac{1}{1-y^2}$$

(d)
$$\frac{1}{y\sqrt{y^2-1}}$$

An antiderivative of a function is also called: (ix)

- a) Definite integral
- b) Indefinite integral
- c) Summation
- d) Differential

The equations of the directories of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are: (x)

- a) $x = \pm a$
- b) $y = \pm a$
- c) $x = \pm a/e$
- d) $y = \pm 1/a$

Time: 2 Hours 40 Minutes

SECTION 'B' (SHORT - ANSWER QUESTIONS)

NOTE: Answer any 10 questions from this section. At least three question from each section.

SECTION B (Analytic Geometry) (Straight Line & Vector Algebra)

2.

- (i) If the line through (2, 5) and (-3, -2) is perpendicular to the line through (4, -1) and (x, 3), find x.
- (ii) Find the equation of the line which passes through the point (-3, 4) and has the sum of its equal to 1.
- (iii) Find the value of k when the vertices of the triangle are (2, 6), (6, 3) and (4, k) and area is 17 square units.
- (iv) The gradient of one of the lines $ax^2 + 2hxy + by^2 = 0$ is five times that of the other, show that $5b^2$ 9ab.
- (v) Find the equation of the circle whose diameter is the latus rectum of the parabola $y^2 = -36x$.
- (vi) Find the eccentricity, foci and equations of directories of $25x^2 + 9y^2 = 225$.

OR Find the eccentricity of the hyperbola whose latus rectum is four times that of the transverse axis.

- (vii) Fine the equation of the circle touching each of the axes in 4th quadrant at a distance of 6 from the origin.
- (viii) Find the equation of the circle which is concentric with the circle $x^2 + y^2 8x + 12y 12 = 0$ and passes through the point (5, 4).
- (ix) Prove that $\left[\bar{a}, 2\bar{b} 3\bar{c}, -2\bar{a} + \bar{b} + \bar{c}\right] = 5 \left[\bar{a}, \bar{b}, \bar{c}\right]$

OR Find the scalars x, y and z such that $x(3\hat{\imath} - 4\hat{k}) + y(-\hat{\imath} + \hat{\jmath} + 2\hat{k}) + z(\hat{\imath} - 4\hat{k}) = (5\hat{\imath} + 4\hat{\jmath} - 10\hat{k}).$

CALCULAS

NOTE: Attempt 3 questions from this section.

3.

- (i) Find the derivative by the 1st principles at x = a in the domain D(f) of $(x) = \csc x$.
- (ii) Evaluate $\lim_{n \to 0} \frac{tanx sinx}{sin^3 x}$
- (iii) Find $\frac{dy}{dx}$ of any two of the following:
 - (a) $y = x^{\sin x + \cos x}$
 - (b) $e^{x}In y = sin^{-1} y$

(c)
$$x = a(\theta - \sin\theta)$$
, $y = a(1 - \cos\theta)$ at $\theta = \pi/2$

OR If $y = f(x) = a \cos x + b \sin x$, $\forall x \in \Re$, show that $\frac{d^2y}{dx^2} + y = 0$

(iv) Evaluate any two of the following:

(a)
$$\int x \ln x \, dx$$
 (b) $\int_{1}^{2} (3x^2 + 2x) \sqrt{x^3 + x^2 + 7} \, dx$
(c) $\int \sin 3x \cos 5x \, dx$ OR $\int \frac{2x - 3}{x^2 + 2x + 2} \, dx$

(v) Using differential, find the approximate value of $\cos 44^{\circ}$.

Marks: 80

SECTION 'C' (DETAILED - ANSWER QUESTIONS)

Note attempt any two question:

4.

(a) (i) D, E, F are the mid-points of the sides BC, CA, AB respectively of the triangle ABC show that AABC = 4ADEF.

(ii) Find the equation of the locus of a moving point such that the slope of the line Joining the point to A (l, 3) is three times that of the slope of the line Joining the point to B (3, 1)

(b) Prove that two circles $x^2 + y^2 + 2gx + c = 0$ and $x^2 + y^2 + 2fy + c = 0$ touch each other, if $\frac{1}{f^2}, \frac{1}{g^2}, \frac{1}{c}$

5.

(a) Evaluate any Two of the following:

(i)
$$\int x^2 \sqrt{4+x} \, dx$$
 (ii) $\int \frac{\cos x \, dx}{\sin x (2+\sin x)}$ (iii) $\int \frac{\tan x}{\ln \cos x} \, dx$

(b) Show that the eccentricities e_1 and e_2 of two conjugate hyperbolas satisfy the relation $e_1^2 + e_2^2 = e_1^2$. e_1^2 . 6.

(a) (i) Show the differential equation: $y\frac{dy}{dx} = x (y^4 + 2y^2 + 1), y(-3) = 1$

(ii) Find the area above the x-axis between the ordinates $x = \pi/4$ and $x = \pi/3$ under the curve $y = \tan x$ (b) Show that the maximum value of $f(x) = --\ln x$ is 1.